

NFRC 201-2004 SOLAR HEAT GAIN COEFFICIENT TEST REPORT

Rendered to:

CLEAR FOCUS IMAGING

SERIES/MODEL: ImageVue® BASE WINDOW: 3/16" Clear Single Glazed PRODUCT TYPE: Window Film on the Exterior of Clear 3/16" Glass

Summary of Results				
Solar Heat Gain Co	Solar Heat Gain Coefficient (SHGC) - Base Window 0.84			
Solar Heat Gain Coefficient (SHGC) - Base with Attachment0.31				
Percent Reduction of Heat Transfer 63%				
Daylight Opening 36" x 48" (914 mm x 1219 mm)				
Layer 1	3/16" Clear Glass			
Attachment ImageVue® exterior-mount, pressure-sensitive film with a 65/35				
perforation pattern (35% open) and 0.06 in. (1.5mm) holes				

Reference should be made to ATI Report No. 99451.04-301-41 for complete test specimen description and data.

2524 E. Jensen Ave Fresno, CA 93706 phone: 559-233-8705 fax: 559-233-8360 www.archtest.com

NFRC 201-2004 SOLAR HEAT GAIN COEFFICIENT TEST REPORT

Rendered to:

CLEAR FOCUS IMAGING 60 Maxwell Court Santa Rosa, California 95401

Report No:	99451.04-301-41
Test Date:	03/22/10
Report Date:	04/14/10
Revision 1 Date:	04/30/10
Record Retention Date:	03/22/14

Test Sample Identification:

Series/Model: ImageVue®

Base Window: 3/16" Clear Single Glazed

Type: Fixed

Overall Size: 37" x 49" (940 mm x 1245 mm) **Daylight Opening Size:** 36" x 48" (914 mm x 1219 mm)

Test Sample Submitted by: Client

Test Procedure: Solar heat gain testing in accordance with NFRC 201-2004, *Interim Standard Test Method for Measuring the Solar Heat Gain Coefficient of Fenestration Systems Using Calorimetry Hot Box Methods*.

Test Results Summary:

Solar Heat Gain Coefficient (SHGC) - Base Window0.84Solar Heat Gain Coefficient (SHGC) - Base with Attachement0.31Percent Reduction Heat Gain63%

2524 E. Jensen Ave Fresno, CA 93706 phone: 559-233-8705 fax: 559-233-8360 www.archtest.com

99451.04-301-41 Page 2 of 7 Revision 1 Date: 04/30/10

Test Sample Description:

Glazing Information:

Layer 1 3/16" Clear Glass	
Affachement	ImageVue® exterior-mount, pressure-sensitive film with a 65/35 perforation pattern (35% open) and 0.06 in. (1.5mm) holes

48" Calorimeter Calibration Information

1.	Moving Pyranometer Last Calibration	02/16/10
2	Flowmeter Last Calibration	01/28/10
3	Thermocouple Last Calibration	02/08/10
4	Surround Panel Conductivity Last Calibration	12/02/09
5	Power Input Last Calibration	02/08/10
6	Fluid Temperature Difference Last Calibration	02/08/10
7	Miscellaneous Power Input Last Calibration	02/08/10
8	Metering Box Last Calibration	03/15/10
9.	Calibration Transfer Standard	03/05/10

99451.04-301-41 Page 3 of 7 Revision 1 Date: 04/30/10

Solar Heat Gain Coefficient (SHGC)

Test Data:

1. Starting Azimuth	231 Degrees
2. Ending Azimuth	241 Degrees
3. Minimum Altitude	34 Degrees
4. Maximum Altitude	41 Degrees
5. Average Barometric Pressure	29.5 Inches of mercury
6. Maximum Wind Velocity	6 MPH
7. Minimum Wind Velocity	2 MPH
8. Average Wind Velocity	4 MPH
9. Average Wind Direction (North equals 360 degrees)	284 Degrees
10. Maximum Exterior Surface Coefficient (Hh-sun)	8.0 Btu/hr·ft ² ·F
11. Minimum Exterior Surface Coefficient (Hh-sun)	6.5 Btu/hr·ft ² ·F
12. Average Exterior Surface Coefficient (Hh-sun)	7.5 Btu/hr·ft ² ·F
13. Average Exterior Air Temperature (t _h)	74.1 F
14. Standardized Weather Conductance (hstil)	5.10 Btu/hr·ft ² ·F
15. Thermal Transmittance (U _s)*	1.030 Btu/hr·ft ² ·F
16. Maximum Solar Irradiation E _s	315.4 $Btu/hr \cdot ft^2$
17. Minimum Solar Irradiation E _s	$301.5 \text{ Btu/hr}\cdot\text{ft}^2$
18. Average Solar Irradiation E _s	$309.0 \text{ Btu/hr}\cdot\text{ft}^2$
19. Inlet Fluid Temperature	66.4 F
20. Outlet Fluid Temperature	67.5 F
21. Test Start Time	14:12 HHMM
22. Test End Time	15:02 HHMM

*Simulated by Window 5

99451.04-301-41 Page 4 of 7 Revision 1 Date: 04/30/10

Solar Heat Gain Coefficient (SHGC)

Test Data: (Continued)

Temperatures during maximum irradiation Air and heat exchanger temperatures *Note: See Appendix A for locations

A.'. (T)	1		70.0 5
Air Top	1	Heat Exchanger	72.2 F
Air Center	2	Heat Exchanger	72.1 F
Air Bottom	3	Heat Exchanger	73.0 F
Location	4	Heat Exchanger	69.0 F
Location	5	Heat Exchanger	68.5 F
Location	6	Heat Exchanger	68.4 F
Location	7	Heat Exchanger	68.9 F
Location	8	Heat Exchanger	67.9 F
Location	9	Heat Exchanger	68.0 F
Location	10	Heat Exchanger	67.9 F
Location	11	Heat Exchanger	67.9 F
Location	12	Heat Exchanger	68.0 F
Location	13	Heat Exchanger	68.0 F
Location	14	Heat Exchanger	67.9 F
Location	15	Heat Exchanger	67.9 F
Location	16	Heat Exchanger	68.1 F
Location	17	Heat Exchanger	70.8 F
Location	18	Heat Exchanger	68.2 F
Location	19	Heat Exchanger	0.0 F
Location	20	Heat Exchanger	71.3 F
Location	21	Heat Exchanger	68.7 F
Location	22	Heat Exchanger	68.6 F
Location	23	Heat Exchanger	67.8 F
Location	24	Heat Exchanger	69.6 F
Location	25	Heat Exchanger	68.1 F
Location	26	Heat Exchanger	68.1 F
Location	27	Heat Exchanger	68.8 F
Location	28	Heat Exchanger	69.3 F

99451.04-301-41 Page 5 of 7 Revision 1 Date: 04/30/10

Solar Heat Gain Coefficient (SHGC)

Test Data: (Continued)

Data at time of maximum irradiation

1.	Average inside air temperature	72.4 F
2	Maximum thermal transmittance (Q u-factor)	28.6 Btu/hr
3	Surround panel inside temperature (tsp1)	71.1 F
4	Surround panel outside temperature (tsp2)	92.7 F
5	Heat flow through surround panel (Qsp)	8.5 Btu/hr
6	Flanking Loss (Qfl)	2.970 Btu/hr
7	Fluid volumetric flow rate (f)	2.3 Gal/mir
8	Auxiliary energy (Q aux)	44.2 Btu/hr
9	Heat Extracted From System (Qfluid)	1304.9 Btu/hr
10	Heat Across Walls (Qwalls)	61.7 Btu/hr
11	Heat Flow Through Test Specimen (Qs)	1158.9 Btu/hr

The specimen was installed into an extruded polystyrene foam panel with an R-value of 17 using silicone caulking. Tracking system azimuth and altitude are read every minute and the calorimeter is moved to a position normal to the sun from chart stored in computer. The calorimeter is located at 2524 East Jensen in Fresno, California near the southwest corner of the lot elevated approximately 15 feet from ground level. The foreground is desert, the background is industrial buildings.

The estimated uncertainty of this test 2.72%

This was determined using ANSI/NCSL Z540-2-1997 type B evaluation as described in section 4.3 of this specification. For assumptions used for this calculation or for a description of the procedure contact the "Individual-In-Responsible-Charge" that signed this report.

99451.04-301-41 Page 6 of 7 Revision 1 Date: 04/30/10

"This test method does not include separate procedures to determine the heat flows due to either air movement or nighttime U-factor effects. As a consequence, the SHGC results obtained do not reflect the overall performance which may be found in field installations due to temperature differences, wind, shading, air leakage effects, and the thermal bridge effects specific to the design and construction of the fenestration system opening."

"Since there is a wide variety of fenestration system openings in residential, commercial and industrial buildings, it is not feasible to select a "typical" surround panel construction in which to mount the fenestration test specimen. The selection of a relatively high thermal resistance surround panel places the focus of the test on the thermal performance system alone. Therefore, it should be recognized that the thermal transmittance results obtained from this test method, for ideal laboratory conditions in a highly insulating surround panel, should only be used for fenestration product comparisons or as input to thermal performance analyses which also include thermal, air leakage and thermal bridge effects due to the surrounding building structure. To determine air leakage effects for windows and doors, refer to Test Method ASTM E 283. For thermal transmittance refer to Test Method ASTM C 1199."

Ratings included in this report are for submittal to an NFRC-licensed IA for certification purposes and are not meant to be used for labeling purposes. Only those values identified on a valid Certification Authorization Report (CAR) are to be used for labeling purposes.

Detailed drawings, representative samples of the test specimen and a copy of this report will be retained by Architectural Testing for a period of four years. This report is the exclusive property of the client so named herein and relates only to the fenestration product tested. This report may not be reproduced, except in full, without the approval of the laboratory.

For ARCHITECTURAL TESTING, INC.

Tyler Westerling, P.E. Project Engineer Individual-In-Responsible-Charge Leaton Kirk Director - Regional Operations

TW:he

Attachments (pages): This report is complete only when all attachments listed are included. Appendix-A: Thermocouple Location (1)

99451.04-301-41 Page 7 of 7 Revision 1 Date: 04/30/10

Revision Log

Rev. #	Date	Page(s)	Revision(s)	
0	04/14/10	All	Original Report Issue. Work requested by Judy Bellah of Clear Focus Imaging	
1	04/30/10	Title, 1, 2	Added registered trademark symbol to series/model	
1	04/30/10	Title	Corrected typo	

99451.04-301-41

Appendix A

Thermocouple Locations

Absorber Plate Thermocouple Layout

		2	1 BL		
7 B O	8 12 16 20	9 13 17 21	14 2 18	11 15 19 23	5 B M
		(6 B N		